Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Environ Virol ; 16(1): 65-78, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372960

ABSTRACT

Restroom use has been implicated in a number of viral outbreaks. In this study, we apply quantitative microbial risk assessment to quantify the risk of viral transmission by contaminated restroom fomites. We estimate risk from high-touch fomite surfaces (entrance/exit door, toilet seat) for three viruses of interest (SARS-CoV-2, adenovirus, norovirus) through eight exposure scenarios involving differing user behaviors, and the use of hand sanitizer following each scenario. We assessed the impacts of several sequences of fomite contacts in the restroom, reflecting the variability of human behavior, on infection risks for these viruses. Touching of the toilet seat was assumed to model adjustment of the seat (open vs. closed), a common touch point in single-user restrooms (home, small business, hospital). A Monte Carlo simulation was conducted for each exposure scenario (10,000 simulations each). Norovirus resulted in the highest probability of infection for all exposure scenarios with fomite surfaces. Post-restroom automatic-dispensing hand sanitizer use reduced the probability of infection for each virus by up to 99.75%. Handwashing within the restroom, an important risk-reduction intervention, was not found to be as effective as use of a non-touch hand sanitizer dispenser for reducing risk to near or below 1/1,000,000, a commonly used risk threshold for comparison.


Subject(s)
Hand Sanitizers , Norovirus , Viruses , Humans , Toilet Facilities , Fomites , Norovirus/genetics , Risk Assessment
2.
Sci Total Environ ; 917: 170141, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38242485

ABSTRACT

Valley Fever is a respiratory disease caused by inhalation of arthroconidia, a type of spore produced by fungi within the genus Coccidioides spp. which are found in dry, hot ecosystems of the Western Hemisphere. A quantitative microbial risk assessment (QMRA) for the disease has not yet been performed due to a lack of dose-response models and a scarcity of quantitative occurrence data from environmental samples. A literature review was performed to gather data on experimental animal dosing studies, environmental occurrence, human disease outbreaks, and meteorological associations. As a result, a risk framework is presented with information for parameterizing QMRA models for Coccidioides spp., with eight new dose-response models proposed. A probabilistic QMRA was conducted for a Southwestern US agricultural case study, evaluating eight scenarios related to farming occupational exposures. Median daily workday risks for developing severe Valley Fever ranged from 2.53 × 10-7 (planting by hand while wearing an N95 facemask) to 1.33 × 10-3 (machine harvesting while not wearing a facemask). The literature review and QMRA synthesis confirmed that exposure to aerosolized arthroconidia has the potential to result in high attack rates but highlighted that the mechanistic relationships between environmental conditions and disease remain poorly understood. Recommendations for Valley Fever risk assessment research needs in order to reduce disease risks are discussed, including interventions for farmers.


Subject(s)
Coccidioides , Coccidioidomycosis , Animals , Humans , Coccidioidomycosis/epidemiology , Coccidioidomycosis/microbiology , Ecosystem , Risk Factors , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...